El salmón atlántico *Salmo salar* L. ha sufrido un acusado declive histórico en los ríos de Cantabria, especialmente durante las últimas décadas. De las siete poblaciones históricas, tres (Saja-Besaya, Miera y Agüera) se encuentran Extintas (Ex), dos poblaciones (Asón y Pas) se encuentran en Peligro Crítico (CR), y otras dos (Nansa y Deva) se encuentran en Peligro (EN). Además de ser menos abundantes, los adultos de retorno son en la actualidad de menor tamaño y edad, entran más tarde en los ríos, tienen más dificultad para acceder a las cabeceras y menor probabilidad de desovar con éxito. Los estudios realizados indican, así mismo, que las cuatro poblaciones de salmón de Cantabria mantienen suficiente diversidad genética para ser consideradas como unidades discretas, y poseen rasgos diferenciales que justifican una alta prioridad de conservación. Además de la sobre-explotación, las amenazas más importantes para la especie incluyen la captación excesiva de caudal, la contaminación del agua y la degradación del hábitat.

© FOTOS: CENTRO ICTIOLÓGICO DE ARREDONDO.
El Programa de Recuperación, iniciado en 1996, ha permitido caracterizar las poblaciones de salmón tanto históricas como actuales e identificar los principales factores limitantes y causas de mortalidad. Intenta frenar el declive de la especie mediante la cría en cautividad y posterior suelta de juveniles autóctonos, marcados y vacunados, y está aumentando el área ocupada por la especie mediante la eliminación de obstáculos a la migración, la construcción de pasos para peces, y la reintroducción del salmón en sus áreas históricas de distribución.

Biología y ciclo de vida

El salmón atlántico *Salmo salar* es una especie normalmente anádroma que se reproduce en los ríos y crece en el mar. En las poblaciones de Cantabria, los juveniles permanecen en el río durante 1-2 inviernos (excepcionalmente 3), para migrar al mar en la primavera, crecer allí durante 1-3 inviernos (excepcionalmente 4), y retornar al río de nacimiento como adultos para reproducirse. La clase de edad dominante, no obstante, la componen ejemplares de 1 año de edad fluvial y 2 años de edad de mar (total 3 años). En el caso de los machos, una parte de los juveniles, llamados *víroneros*, pueden madurar sexualmente en el río antes de migrar al mar, y contribuir así con su esperma a fertilizar los huevos de las hembras anádromas.

Tres características destacan a los adultos de esta especie: sus extensas migraciones y alta fidelidad al río de nacimiento, que da lugar a poblaciones únicas y diferentes en cada río, su reproducción, que se realiza por norma general sólo después de un largo período sin haber ingerido alimento, y la naturaleza de su explotación, que conlleva normalmente la muerte de ejemplares antes de que puedan reproducirse.

En Cantabria, la reproducción (*desove o freza*) tiene lugar entre los meses de noviembre y enero, con periodos de máxima actividad a mediados de diciembre. Si no existen obstáculos que se lo impidan, los reproductores intentan ganar los cursos altos de los ríos aprovechando las crecidas de otoño para desovar en aguas bien oxigenadas y donde no pueden acceder la mayor parte de otras especies. La hembra selecciona para la freza zonas del río con profundidad media, un lecho de grava, y donde exista un flujo laminar y una cierta aceleración de la corriente. Excava mediante fuertes batidas de la cola una depresión en el lecho de grava del río, llamada *cama*, donde deposita los huevos, que son fertilizados inmediatamente por el esperma de los machos. Procede luego a cubrirlas con nuevas batidas de la cola para evitar que sean arrastradas por la corriente y protegerlas de los depredadores. Tras el desove, los reproductores se encuentran muy debilitados tras el intenso esfuerzo y el largo período sin...
Ingerir alimento, denominándose ahora zancados. Intentarán ganar el mar para volver a reproducirse al año siguiente, pero casi ninguno lo conseguirá.

La fecundidad de las hembras en las poblaciones de Cantabria oscila entre 1.200 y 2.300 huevos por kg de peso corporal. Los huevos son esféricos y tienen entre 4 y 6 mm de diámetro. Permanecen enterrados en la grava hasta marzo-abril, cuando comienzan aemerger de ellos los primeros alevines. Éstos se alimentan inicialmente de las reservas lipídicas que obtienen del huevo y, una vez agotadas, éstas se dispersan normalmente río abajo. La mortalidad durante las primeras semanas de vida es muy alta, frecuentemente superior al 90%. Durante su fase fluvial, los juveniles, que después de la fase de alevín se denominan pintos, son sedentarios y defienden pequeños territorios, donde atrapan insectos y macroinvertebrados arrastrados por el río, que constituyen la base de su dieta. Durante la primavera de su primer o segundo año de vida, los juveniles, llamados ahora esguines, adquieren una librea plateada, pierden su comportamiento territorial, y comienzan su descenso río abajo hacia el mar. La mortalidad durante esta fase de transición es otra vez elevada.

En el mar, los salmones realizan extensas migraciones que los llevan hasta la región subártica del Atlántico norte. Allí permanecen de 1 a 3 invernos, alimentándose de crustáceos, cefalópodos y peces, hasta aumentar su tamaño considerablemente y emprender la migración de regreso a sus ríos de origen mediante un preciso sentido de la orientación. Los adultos de mayor tamaño (4-6 kg) y varios invernos de mar, llamados en Cantabria abríñeros, suelen ser hembras y remontan los ríos normalmente a partir de la primavera, mientras que la entrada de los ejemplares más pequeños (1,6-3 kg) y de un solo invierno de mar, llamados añales o agostizos y entre los que abundan los machos, se retrasa hasta el verano y principios del otoño, fuera ya de la temporada de pesca. La explotación del recurso incide por eso de manera desproporcionada sobre las hembras de mayor tamaño y fecundidad.

Evolución de las poblaciones

Los ríos de la vertiente cantábrica representan, junto con los del noroeste ibérico peninsular, el límite meridional de la distribución del salmón en Europa. La especie nunca existió en los ríos que vierten al mediterráneo.

Durante la última gran glaciación, hace aproximadamente 18.000 años, los ríos cantábricos constituieron probablemente uno de los pocos refugios glaciares para el salmón, que pudo seguir reproduciéndose aquí mientras desaparecía de la mayor parte del resto del continente europeo, cubierto entonces por el hielo. Las poblaciones cántabras se encuentran
por lo tanto, entre las más antiguas de Europa (Consuegra et al., 2002).

Históricamente, el salmón en Cantabria habitaba con seguridad los ríos Agüera, Asón, Miera, Pas, Besaya, Saja, Nansa, y es probable que existiesen también poblaciones menores en otros cursos fluviales como el Campiazo o el Escudo. La longitud de río históricamente accesible se cifra en unos 833 km, de los cuales unos 194 km correspondían al sistema Saja-Besaya. En la actualidad, su presencia habitual se reduce a unos 131 km en las cuencas de los ríos Asón (35 km), Pas-Pisueña (51 km), Nansa (14 km) y Deva (31 km), si bien se pueden producir entradas esporádicas de adultos en el Agüera y el Miera, donde la especie es objeto de un plan de reintroducción. La existencia de numerosas presas y azudes constituyen, junto con la reducción en el caudal circulante, las principales causas de la reducción del área de distribución de la especie en Cantabria.

La abundancia del salmón ha sufrido una acusada disminución histórica en la península Ibérica, tanto en las capturas como en las capturas ponderadas por el esfuerzo de pesca (CPUE), al igual que se observa también en otras áreas de distribución. En España dicho declive se ha agravado en las últimas décadas y ha venido acompañado de otros cambios poblacionales tales como (1) una reducción en el tamaño medio y longevidad de los reproductores, (2) un retraso en el momento de entrada de los adultos en los ríos, (3) cambios en la estructura genética y (4) una reducción en el área fluvial utilizada por la especie. Aunque las causas del declive son complejas, diversos estudios apuntan al cambio climático y a la sobre-exploitación que se ejerce sobre las grandes hembras de primavera como dos causas importantes que explicarían por qué los salmones son cada vez más pequeños y entran más tarde en los ríos. En cualquier caso, los cambios detectados resultan en general indicativos de poblaciones alteradas, y constituyen una señal de alarma ante el estado de conservación de la especie.

Programa de recuperación
La Recuperación del Salmón en Cantabria se basa en cuatro líneas principales de trabajo:
1. La caracterización de poblaciones e identificación de factores limitantes.
2. El desarrollo de un programa de cría en cautividad.
3. La mejora de la accesibilidad en las cuencas salmoneras.
4. La divulgación y educación ambiental.

1. Caracterización de poblaciones e identificación de factores limitantes
Desde el punto de vista genético, y atendiendo tanto a marcadores isoenzimáticos (proteínas) como al ADN mitocondrial (heredado maternalmente) y al ADN nuclear (miosatélites), las poblaciones de salmón de las
cuencas de los ríos Asón, Pas, Nansa y Deva presentan suficiente diversidad genética para ser consideradas como unidades discretas, y poseen rasgos diferenciales frente a otras poblaciones europeas (Figura 1), que justifican una alta prioridad de conservación.

En Cantabria, de las siete cuencas donde se tiene constancia de su presencia histórica, tres poblaciones se encuentran hoy Extintas (Agüera, Miera, Saja-Besaya), dos poblaciones se encuentran en Peligro Crítico (Asón, Pas-Pisuéña), y otras dos poblaciones se encuentran en Peligro (Nansa, Deva). Globalmente, el salmón en el conjunto de Cantabria se incluiría, con toda probabilidad, en la categoría de "En Peligro, EN" (García de Leániz et al., 2001), la misma categoría de amenaza que en el conjunto de España (Doadrio, 2001) y Portugal (Valente y Maia, 2001).

Como la especie sólo puede subsistir en aquellos ríos con una alta calidad ambiental desde la cabecera hasta su desembocadura, se considera que representa uno de los mejores indicadores de calidad fluvial. En Cantabria, los estudios realizados indican que las principales causas de alteración de los ríos son las siguientes: Asón:
- Captación excesiva de caudal.
- Pistas y carreteras a menos de 100 m de los cauces.
- Efluentesagrícolas.
- Piscifactorías.
- Pescafluvial.
- Enfermedades infecciosas.

FIGURA 1
RELACIÓN FILOGENÉTICA A NIVEL DEL ADN MITOCONDRIAL ENTRE LAS CUATRO POBLACIONES DE SALMÓN DE CANTABRIA (ASÓN, PAS, NANSA Y DEVA) Y OTRAS POBLACIONES DE SALMÓN EUROPEAS ENCUADRADAS DENTRO DE LOS LINAJES ATLÁNTICO Y BÁLTICO (ADAPTADO DE CONSUERGA ET AL., 2002).

Los encauzamientos y escolleras destruyen las zonas de freza y alevinaje, especialmente en los pequeños afluentes de cabecera (nó corbera, cuenca del Deva).
Pas:
- Captación excesiva de caudal.
- Encauzamientos y escolleras.
- Tala de la vegetación ripícola.
- Pistas y carreteras a menos de 100 m de los cauces.
- Efluentes industriales.
- Incendios y quemas.
- Puentes, accesos y vados.

Nansa:
- Captación excesiva de caudal.
- Variaciones bruscas de caudal.

- Regulación hidroeléctrica del caudal.
- Presas infranqueables.

Deva:
- Efluentes agrícolas y ganaderos.
- Puentes, accesos y vados.

Las distintas estrategias de conservación de la especie se tratan en el trabajo de Dodson et al. (1998), mientras que las principales medidas para su conservación pasan por conseguir un aumento en el nivel de desove natural, recuperando la calidad fluvial, reduciendo las causas de mortalidad y logrando que un mayor

<table>
<thead>
<tr>
<th>PROBLEMA</th>
<th>PRINCIPALES SOLUCIONES Y MEDIDAS DE CONSERVACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escasa accesibilidad</td>
<td>1. Eliminar obstáculos limitantes fuera de uso.</td>
</tr>
<tr>
<td></td>
<td>2. Construir pasos para peces eficaces.</td>
</tr>
<tr>
<td></td>
<td>3. Reintroducir la especie en su área histórica de distribución.</td>
</tr>
<tr>
<td>Contaminación del agua</td>
<td>1. Construir estaciones depuradoras de aguas residuales (EDAR).</td>
</tr>
<tr>
<td></td>
<td>2. Reducir la contaminación difusa de origen agrícola y ganadero.</td>
</tr>
<tr>
<td></td>
<td>4. Controlar y vigilar el uso y vertido de plaguicidas y sustancias nocivas.</td>
</tr>
<tr>
<td></td>
<td>5. Mantener franjas verdes de vegetación ripícola.</td>
</tr>
<tr>
<td>Degradación del hábitat</td>
<td>1. Proteger estrictamente la vegetación de ribera.</td>
</tr>
<tr>
<td></td>
<td>2. Evitar pistas y carreteras dentro del DPH y del área de policía (100 m).</td>
</tr>
<tr>
<td></td>
<td>3. Evitar la construcción de encauzamientos y escolleras.</td>
</tr>
<tr>
<td></td>
<td>4. Prohibir la extracción de áridos.</td>
</tr>
<tr>
<td></td>
<td>5. Limitar el desarrollo de canteras dentro de la zona de policía.</td>
</tr>
<tr>
<td></td>
<td>6. Evitar el paso indiscriminado de ganado y maquinaria por los cauces.</td>
</tr>
<tr>
<td></td>
<td>7. Evitar las explotaciones forestales dentro del área de policía.</td>
</tr>
<tr>
<td>Captación de agua</td>
<td>1. Fijar y garantizar caudales ecológicos adecuados.</td>
</tr>
<tr>
<td></td>
<td>2. Revisar las concesiones de los aprovechamientos existentes.</td>
</tr>
<tr>
<td></td>
<td>3. Adoptar técnicas de reciclado y ahorro del agua.</td>
</tr>
<tr>
<td></td>
<td>4. Restituir el caudal tan cerca como sea posible del punto de captación.</td>
</tr>
<tr>
<td>Sobre-explotación</td>
<td>1. Desarrollar medidas legales de protección para la especie.</td>
</tr>
<tr>
<td></td>
<td>2. Subordinar la explotación al número requerido de reproductores.</td>
</tr>
<tr>
<td></td>
<td>3. Implantar técnicas de seguimiento y control anual de las poblaciones.</td>
</tr>
<tr>
<td></td>
<td>4. Establecer reservas de freza y alevínaje.</td>
</tr>
<tr>
<td>Enfermedades y parásitos</td>
<td>1. Desarrollar técnicas para la detección rápida de procesos infecciosos.</td>
</tr>
<tr>
<td></td>
<td>2. Evaluar sistematicamente el estado sanitario de las poblaciones.</td>
</tr>
<tr>
<td></td>
<td>3. Controlar rigurosamente las instalaciones piscícolas.</td>
</tr>
<tr>
<td></td>
<td>4. Realizar campañas de vacunación de juveniles y reproductores.</td>
</tr>
</tbody>
</table>
número de hembras pueda reproducirse con éxito manteniendo la diversidad e identidad genética de cada población. En Cantabria, ello se traduce en las siguientes recomendaciones (TABLA 1).

2. Programa de Cría en Cautividad
El Programa de cría en cautividad desarrollado en el Centro Ictiológico de Arredondo ha permitido producir juveniles autóctonos de las cuatro cuencas salmoneras (Asón, Pas, Nansa, y Deva). Estos juveniles son vacunados y marcados individualmente antes de proceder a su suelta en los ríos de origen de los parentales.

Los gametos se obtienen de cuatro fuentes diferentes: de la captura de reproductores salvajes antes de su reproducción, de la recuperación de zancadas, del acondicionamiento de pintos en agua dulce hasta su maduración sexual (ejemplares holobióticos), y de un banco de genes, tal y como se muestra esquemáticamente en la FIGURA 2.

Hasta el año 1988 las repoblaciones en Cantabria se efectuaron con stocks extranjeros, principalmente de Escocia. Estudios genéticos posteriores demostraron que la supervivencia de estos ejemplares era muy baja (VERSPoord et al., 1988; GARcía de LEÁNIZ et al., 1989; VERSPoord y GARcía de LEÁNIZ et al., 1997), por lo que en la actualidad se repuebla con juveniles autóctonos, habiéndose además abandonado las repoblaciones con huevos y alevines, en favor de la suelta de juveniles con un mayor grado de desarrollo (pintos de otoño y pre-esguínes) y tasas más altas de supervivencia.

La puesta a punto y mejora en las técnicas de recuperación de zancadas ha permitido ir disminuyendo progresivamente la necesidad de capturar reproductores salvajes todos los años. En la actualidad, más de la mitad de los juveniles producidos provienen de la recuperación de zancadas y del acondicionamiento y maduración sexual de hembras holobióticas en agua dulce.

Para aumentar la variabilidad genética de los juveniles obtenidos, todos los parentales son marcados individualmente con un micro-chip y se realiza un análisis genético previo antes de realizar los cruces.

Los juveniles son todos micro-marcados y
El declive de las poblaciones de salmón atlántico en la península Ibérica ha motivado la puesta en marcha de diferentes Planes de Recuperación de la especie, como el que se desarrolla en Cantabria desde el Centro Ictiológico de Arredondo.
vacunados contra tres enfermedades infecciosas antes de proceder a las sueltas. Los resultados obtenidos indican que las vacunas aumentan significativamente la probabilidad de que los adultos sobrevivan hasta el desove. Las tasas de recaptura en el río como adultos para los ejemplares marcados como juveniles han variado más de 10 veces entre lotes, cifrándose el valor medio entorno al 0,2%. La incidencia observada de ejemplares de repoblación entre el total de adultos controlados aumentó desde el 2,1% en 1997 hasta el 25,7% en el año 2000, si bien existen diferencias importantes entre ríos y cohortes.

Del análisis de las recapturas de ejemplares micro-marcados en los ríos se desprende que el 86,1% de los peces recapturados volvieron al río de origen. Ello sugiere que la impronta que determina la fidelidad de retorno se produce cuando los juveniles esguinan en primavera, dado que la fidelidad es igualmente alta en el caso de los juveniles del Asón (culturados con agua del Asón), como en el caso de los juveniles del Pas y el Nansa, que también nacieron y se cultivaron hasta el otoño con agua del Asón.

De los datos obtenidos es posible así mismo comenzar a estimar el intercambio de reproductores marcados, siendo éste diferente entre los diferentes ríos. Así, mientras que no parece existir ningún aporte de inmigrantes al río Asón y un aporte bastante reducido al Pas (3,4%), en el río Nansa en cambio hasta un 28,4% de los ejemplares recapturados proceden de otros ríos de Cantabria. Ello indica, al menos para los ejemplares repoblados, que existe un cierto flujo de reproductores entre las distintas poblaciones.

3. Mejora de la Accesibilidad en las cuencas salmoneras

El Programa de Mejora de la Accesibilidad comenzó en el año 1998 con el inventariado de la totalidad de los obstáculos existentes en las cuencas salmoneras, como paso previo a la elaboración de un plan de trabajo encaminado a mejorar la accesibilidad para el salmón y otras especies migradoras. Se recabó luego información sobre el estado concesional de los azudes y se redactaron proyectos de obra, tanto para la demolición de aquellos carentes de concesión, como para la construcción de pasos para peces.

Las primeras obras, completadas en la cuenca del Asón, han consistido en la demolición de 5 azudes carentes de concesión y con alturas comprendidas entre 0,60 y 6,5 m. Los primeros resultados de estas actuaciones se pudieron comprobar ya durante el invierno del año 2000, en el que se detectaron desoves de salmón en el río Gándara, aguas arriba de uno de los obstáculos eliminados. Además de la eliminación de obstáculos, se ha construido un paso tipo Denil de dos rampas en la presa de Marrón y otro paso Denil de tres rampas en la presa de Batuerto. Este último paso irá además dotado de un contador automático de salmones que ayudará a estimar el tamaño anual de la población de reproductores.

El programa de mejora de la accesibilidad se espera completar con la construcción de otros pasos, que cuentan ya con proyectos de obra. Además de facilitar sus movimientos migratorios, los pasos para peces permiten realizar un censo y control de los reproductores, lo que resulta importante para poder estimar la abundancia y evolución de las poblaciones.
4. Divulgación y Educación Ambiental
Los trabajos de recuperación del salmón en Cantabria se complementan con un Programa de Divulgación y Educación Ambiental que incluye, además de las visitas al Centro Ictiológico por parte de centros escolares y público en general, el mantenimiento de una página web (http://ictoarrendondo.cjb.net), la edición de diverso material informativo, la organización de cursos y seminarios y la posibilidad de realizar prácticas tuteladas.

Como soporte al programa de educación ambiental, se ha finalizado recientemente la construcción de un "fluviarium" y de un arroyo artificial que permiten recrear a escala muchas de las condiciones de un río y observar y estudiar los salmones y otras especies piscícolas de los ríos de Cantabria en su medio natural.

Agradecimientos
Queremos expresar nuestro agradecimiento a los Agentes del Medio Natural de la Comunidad Autónoma de Cantabria y a los estudiantes del Instituto de Heras y de las Universidades de Londres, Salamanca, Valladolid y Navarra que realizaron prácticas en el Centro Ictiológico de Arredondo, por su ayuda en la recogida de muestras y en la obtención de datos.

BIBLIOGRAFÍA

