Stocking success of Scottish A tlantic salmon in two Spanish rivers

E. Verspoor* \ddagger and C. Garcia de Leániz \dagger
*M arine Laboratory, P.O. Box 101, A berdeen AB11 9DB, Scotland and \dagger Dirección Regional de M ontes y Conservación de la N aturaleza, R odriguez 5, 39071 Santander, Spain

(Received 5 M arch 1997, A ccepted 5 J uly 1997)

Abstract

A previous analysis of proportions of stocked and wild A tlantic salmon among angled fish in the Rivers A són and Nansa in northern Spain based on the analysis of M EP-2* genotypes is extended. The results reinforce the initial conclusion that returns of stocked Scottish salmon are significantly lower than returns for wild fish.

K ey words: malic enzyme; M EP-2*; Salmo salar; introductions.

The biological consequences of introductions of non-native A tlantic salmon Salmo salar L., for wild populations of conspecifics are poorly understood (Verspoor, 1989). Circumstantial evidence suggests that the consequences may be negative (Hindar et al., 1991). The long-term genetic impact of introductions of non-natives will be largely dependent on the numbers of foreign fish which survive to reproduce. In a previous study (G arcia de Leániz et al., 1989), evidence was found of a lower return rate of stocked Scottish salmon to the angling fisheries of the R ivers A són and N ansa, in northern Spain, compared to wild fish. The cause appeared to be poorer survival of the introduced fish rather than differences in behaviour affecting availability to anglers. Here the initial analysis of the relative return rates was extended to include adult fish caught by angling in 1989 and 1990, as well as data on wild fry, parr and smolts from the 1986, 1987 and 1988 year classes sampled in 1988. The new analysis covers the year classes 1984-1988 in the A són and 1984-1986 in the N ansa.

The stocked components of the 1984-1988 year classes in the two rivers derive from imported ova obtained, with two exceptions, from the Polly Estates hatchery in Scotland. The exceptions relate to the A són where for the 1984 year class 56% of salmon stocked derived from Polly E states and 44\% from a farmed I celandic source, and for the 1987 year class where 34\% of stocked fish were from Polly Estates, 34% from the R iver Spey in Scotland, 5% from the R iver Shin in Scotland, and 27% from Silver Cup, a farm strain of N orwegian origin from D enmark. The stocking was carried out at the eyed ova stage and the relative expected proportions of introduced and wild ova were estimated from redd counts (Garcia de Leániz et al., unpublished). Fish were typed for variation at the diallelic MEP-2* Iocus (E.C. 1.1.1.40-previously called Me-2) using starch gel electrophoresis (V erspoor, 1988). A s previously (G arcia de L eániz et al., 1989), estimates of the proportion of stocked and native fish were derived from the extent of the deficit in the proportion of heterozygote genotypes (M ork et al., 1984) based on the Wahlund effect (Hartl \& Clark, 1989). Departures from C-H-W genotype proportions were expressed in terms of $\mathrm{F}_{\text {IS }}$ (1-observed/expected heterozygotes) and assessed for significance using the G-test adjusted by Williams' correction (Sokal \& Rohlf, 1981). Heterozygote deficiencies were expected for physical mixtures of stocked northern European and wild Spanish salmon given that the former generally (Verspoor \& J ordan,

[^0]Table I. Frequencies of M EP-2* genotypes observed among juvenile fish sampled in A pril 1988 in the Rivers A són and N ansa

River stage/age	No. typed	$\begin{aligned} & \text { Y ear } \\ & \text { class } \end{aligned}$	$\begin{aligned} & 110 / \\ & 100 \end{aligned}$	$\begin{aligned} & 100 / \\ & 125 \end{aligned}$	$\begin{aligned} & 125 / \\ & 125 \end{aligned}$	$\mathrm{F}_{\text {IS }}$	G-test probability	$\begin{gathered} \text { F requency } \\ * 100 \end{gathered}$
River A són								
Fry 0+	14	1988	13	1	0	+0.37	NS	0.964
Parr 2+	8	1986	7	1	0	-0.07	NS	0.938
1+	33	1987	16	8	9	+0.49	0.005	0.606
	1	N/A	0	1	0	-1.0	NS	$0 \cdot 500$
	42	Total	23	10	9	$+0.46$	0.003	$0 \cdot 667$
Smolts $2+$	5	1986	4	0	1	+1.0	N S	0.800
$1+$	23	1987	9	6	8	$+0.48$	$0 \cdot 023$	0.522
	1	N/A	1	0	0	0	NS	1.00
	29	Total	14	6	9	$+0.57$	$0 \cdot 002$	$0 \cdot 586$
River N ansa								
Fry 0+	9	1988	9	0	0	0	NS	1.00
Parr 1+	2	1987	1	1	0	-0.20	NS	0.750
Smolts 2+	1	1986	1	0	0	0	NS	1.00
$1+$	24	1987	18	4	2	$+0.41$	0.06	0.833
	25	Total	19	4	2	$+0.40$	0.08	0.840

1989), and the planted stocks specifically (Verspoor et al., unpublished), are characterized by M E P - $2 * 100$ frequencies of <0.500 while among wild Spanish salmon they range from 0.85 to 1.0 (Verspoor et al., unpublished).

Significant heterogeneity in genotype frequencies was found among juvenile fish (Table I). The 1986 and 1987 year classes of parr from the A són were different ($G=4 \cdot 2$, d.f. $=1, P=0 \cdot 04$) but not the smolts ($G=2 \cdot 6$, d.f. $=1, P=0 \cdot 11$). No significant differences occurred between parr and smolts from the same year class in the A són but there was significant heterogeneity among juvenile year classes ($G=17 \cdot 4$, d.f. $=4, \quad P=0 \cdot 0016$). A mong N ansa juveniles, the only significant difference was between the 1987 (parr and smolts) and 1988 (fry) year classes ($\mathrm{G}=3 \cdot 7$, d.f. $=1, \mathrm{P}=0.05$). The 1987 A són parr were significantly different from the 1987 returning adults (Table II; $G=9.4$, d.f. $=2, \mathrm{P}=0.009$) and from the 1988 wild fry, unaffected by stocking ($G=6 \cdot 2$, d.f. $=1, P=0 \cdot 013$). No comparison of juveniles and adults of the same year class was possible for the N ansa.

For adult fish, the extended analysis (Table II) shows year class heterogeneity in the A són ($G=11 \cdot 5$, d.f. $=4, P=0.02-$ the 1983 year class excluded), attributable to the 1988 year class being significantly different from the others ($G=8 \cdot 4$, d.f. $=1, P=0 \cdot 0038$). A mong the other year classes there is no evidence of heterogeneity ($G=2 \cdot 7$, d.f. $=3$, $\mathrm{P}=0.43$). No year class heterogeneity was detected among the angled N ansa adults ($\mathrm{G}=3 \cdot 7$, d.f. $=2, \mathrm{P}=0 \cdot 14$ - the 1987 year class excluded), and genotype frequencies among angled fish were not significantly different from post spawning kelts (Table II; G $=2 \cdot 25$, d.f. $=1, P=0 \cdot 13$). Thus, fish caught by angling are likely to be representative of the adult population as a whole.

Heterozygote deficiencies were observed among the 1987 A són parr and smolts, the 1985 year class of adults from the R iver A són, 1987 N ansa smolts, and 1986 N ansa adults (Tables I and II) though only for the A són samples were they significant. Expected proportions of stocked and wild fish estimated from the heterozygote deficits in the adult year classes were one-third and onequarter of the numbers expected based on numbers of ova stocked and estimates of natural egg deposition (Table III). These were calculated using the M EP - $2 * 100$ frequency of 0.337 found for the 1986 year class in the River Polly (J ordan et al., 1992), the source of the brood stock used to generate the eggs stocked in the A són and N ansa in 1986. The estimated proportions of stocked fish among juveniles were higher than expected in the R iver A són and lower than expected in the N ansa. The expected numbers of stocked fish among sampled adults in the different year classes differed in three of the five year classes of adults in the A són and in one of the three year

Table II. F requencies of M EP-2* genotypes observed among adult fish sampled in 1988-1990 rod and line fisheries in the Rivers A són and N ansa

$\begin{aligned} & \text { Y ear } \\ & \text { class } \end{aligned}$	$\begin{aligned} & 110 / \\ & 100 \end{aligned}$	$\begin{aligned} & 100 / \\ & 125 \end{aligned}$	$\begin{aligned} & 125 / \\ & 125 \end{aligned}$	Total	$\mathrm{F}_{\text {IS }}$	G-test probability	$\begin{gathered} \text { Frequency } \\ * 100 \end{gathered}$
R iver A són (number caught=424, number typed=282)							
1983	1	0	0	1	0	-	1.000
1984	17	3	0	20	-0.08	NS	0.925
1985	184	20	4	208	$+0.234$	0.008	0.933
1986	23	1	0	24	-0.02	NS	0.979
1987	11	3	0	14	-0.12	NS	0.893
1988	4	4	1	9	$+0.00$	NS	0.667
N/A	6	0	0	6	0	NS	1.000
Total	246	31	5	282	$+0.184$	$0 \cdot 011$	0.927
R iver N ansa (number caught=91, number typed $=73$)							
1984	10	3	0	13	-0.13	NS	0.885
1985	34	1	0	35	-0.01	NS	0.986
1986	19	2	1	22	$+0.45$	$0 \cdot 111$	0.909
1987	2	0	0	2	0	NS	1.000
N/A	1	0	0	1	0	NS	1.000
Total	66	6	1	73	$+0.21$	$0 \cdot 180$	0.945
R iver N ansa (K elts; number typed=31)							
K elts	25	6	0	31	$-0 \cdot 11$	NS	0.903

Table III. Estimated proportions of stocked and native fish based on stocking levels relative to estimates of natural egg deposition and observed genotype proportions in year classes showing herterozygote deficiencies indicative of population mixing

Group	Estimated proportions of fish (\%)		Estimated M EP-2* genotype proportions			n	$\begin{aligned} & \text { Estimated } \\ & \text { M EP-2*100 } \end{aligned}$
	From ova deposition	From genotypes	$\begin{aligned} & \hline 100 / \\ & 100 \end{aligned}$	$\begin{aligned} & \hline 100 / \\ & 125 \end{aligned}$	$\begin{aligned} & \hline 125 / \\ & 125 \end{aligned}$		
R iver A són-1985 adults							
Stocked	17	4	$0 \cdot 9$	$3 \cdot 7$	$3 \cdot 6$	8.2	$0 \cdot 337$
W ild	83	96	$183 \cdot 1$	$16 \cdot 3$	$0 \cdot 4$	199.8	0.957
R iver N ansa-1986 adults							
Stocked	32	10	$0 \cdot 3$	1.0	$1 \cdot 0$	$2 \cdot 3$	0.337
Wild	68	90	18.8	$1 \cdot 0$	0	$19 \cdot 8$	0.974
R iver A són - 1986 parr+smolts							
Stocked	11	25	$0 \cdot 3$	1.0	$1 \cdot 0$	$2 \cdot 3$	0.337
W ild	89	75	$6 \cdot 7$	0	0	$6 \cdot 7$	1.00
R iver A són-1987 parr+smolts							
Stocked	50	69	4.4	17.2	16.9	$38 \cdot 5$	0.337
Wild	50	31	$17 \cdot 5$	0	0	$17 \cdot 5$	1.00
River N ansa-1987 parr + smolts							
Stocked	27	16	0.5	1.9	1.9	$4 \cdot 3$	$0 \cdot 337$
W ild	73	84	$18 \cdot 5$	$3 \cdot 1$	$0 \cdot 1$	$21 \cdot 7$	0.936

classes in the N ansa (Table IV). One further year class in the N ansa approaches significance. A cross year classes the differences among adults were highly significant for both the A són ($\mathrm{P}<1 \times 10^{-8}$) and the N ansa $\left(\mathrm{P}=2 \times 10^{-7}\right)$ as were the differences in the expected proportions in the two rivers $\left(\mathrm{P}=4 \times 10^{-4}\right)$. However, the estimated observed proportions in the two rivers were not ($\mathrm{P}=0.57$).

The accuracy of the estimates of proportions of stocked and wild fish in samples will be influenced by sampling error and errors associated with the value of the frequency of

Table IV. Comparisons of expected and estimated numbers of stocked and wild fish among angled adults by year class for the R ivers A són and N ansa

River/ year class	Expected proportion of stocked fish	Sampled adults				Fisher's exact test
		Expected numbers		Estimated numbers		
		W ild	Stocked	Wild	stocked	
River A són						
1984	0.47	11	9	20	0	6×10^{-4}
1985	$0 \cdot 17$	173	35	200	8	8×10^{-6}
1986	$0 \cdot 11$	21	3	24	0	$0 \cdot 11$
1987	$0 \cdot 50$	7	7	7	0	3×10^{-3}
1988	$0 \cdot 12$	8	1	9	0	$0 \cdot 5$
River N ansa						
1984	$0 \cdot 26$	10	3	13	0	$0 \cdot 11$
1985	$0 \cdot 59$	10	15	25	0	1×10^{-6}
1986	$0 \cdot 32$	15	7	20	2	0.07

the $* 100$ allele among stocked fish used to estimate mixing proportions. With the exception of 1985 and 1986, the sample sizes for year classes of angled adults were small, such that sampling error could be important. Sampling error could, for example, account for the deviation of genotype proportions among the 1988 adults in the A són from the other year classes. Given that the stocking level was low relative to natural egg deposition in 1988 when compared to other years and natural levels of spawning (based on redd counts) were high, the high incidence of heterozygotes is unlikely to be due to a high level of stocked fish amongst which heterozygotes would be more common. Otherwise the consistent results across year classes indicate that the basic conclusion, that returns of stocked fish are significantly lower than those of wild fish, is not an artifact of sampling error. The basic conclusion stands if the assumed M EP-2*100 frequency for stocked fish used to derive estimates of proportions of stocked and wild fish in the two adult year classes which showed heterozygote deficits, is only approximately correct. Though in both cases the stocked component was of Polly Estates origin, it is known that hatchery stock can deviate significantly from wild source populations (Verspoor, 1988). If the frequency was overestimated, the conclusion would be even more strongly supported. On the other hand, if it was as high as $0 \cdot 5$, the estimated numbers of stocked fish returning would still be less than half of that expected and the difference significant.

The estimate of the relative survival of the non-native fish is unlikely to be substantively influenced by any selective effect on M EP-2* (V erspoor \& Jordan, 1989). This is possible, given the differences in genotype frequencies among stocked and wild fish. A vailable evidence suggests that selection operates through differential growth and maturation (Jordan \& Y oungson, 1991; Jordan et al., 1990) and thus will affect reproductive success primarily. However, even if associated with differential survival, selection coefficients are likely to be trivial compared to selective differences associated with the overall genetic differences between the non-native and native stocks.

The estimated proportions of stocked fish in the catches in the two rivers are not significantly different though, based on stocking levels, they are expected to be significantly higher among N ansa adults than among adults in the A són. This suggests that stocked fish do less well in the N ansa than in the A són. This may be the case. In the Nansa, an impassible dam confines salmon to the lower 7 km of the system and production of salmon in the system approaches carrying capacity. This is not true for the A són which has 35 km of river accessible to spawning and appears to be far off its potential carrying capacity. Consistent with this, estimated proportions of stocked fish among juveniles (Table III) are lower than expected in the N ansa, though not significantly $(P=0 \cdot 25)$. However, proportions in the A són are significantly higher ($P=0.027$) and more consistent with the differences between the two rivers being due to
non-random sampling of the A són, even though the A són juveniles were collected at five different locations. Whether the differential performance of stocked and wild salmon is associated with the freshwater or marine phase of the life cycle is unclear. Either could be involved given that the fish were planted out as eyed ova. While the sampling of juvenile parr and smolts shows clearly that stocked fish do survive to the smolt stage, the data are inadequate to address the question of differential survival during the freshwater phase of the life cycle, particularly if the juvenile samples are unrepresentative of each river as a whole. A s it stands, the observed heterogeneity in proportions of stocked fish could reflect spatial or temporal variation either in stocking levels or in the survival of stocked fish. Thus, while it is possible to conclude from the extended analysis that overall survival from egg to adult of the stocked fish is significantly lower, the analysis does not allow us to conclude why.

We thank the Servicio de M ontes, Caza y Conservación de la N aturaleza del Gobierno de Cantabria, and especially Juan José M artinez who took care of the logistics associated with the study and the ' guardas' of the Rivers A són and N ansa for collecting the adult samples.

R eferences

G arcia de L eaniz, C., Verspoor, E. \& H awkins, A. D. (1989). G enetic determination of the contribution of stocked and wild A tlantic salmon, Salmo salar L., to the angling fisheries in two Spanish rivers. J ournal of Fish Biology 35 (Suppl. A), 261-270.
Hartl, D. L. \& Clark, A. G. (1989). Principals of Population Genetics, 2nd edn. Sunderland, M assachusetts: Sinauer A ssociates.
Hindar, K ., R yman, N. \& U tter, F. (1991). Genetic effects of cultured fish on natural fish populations. C anadian J ournal of Fisheries and A quatic Sciences 48, 945-957.
Jordan, W. C. \& Y oungson, A. F. (1991). Genetic protein variation and natural selection in A tlantic salmon (Salmo salar) parr. J ournal of Fish Biology 39 (Suppl. A), 185-192.
J ordan, W. C., Y oungson, A . F. \& W ebb, J. H. (1990). Genetic variation at the malic enzyme-2 locus and age at maturity in sea-run Atlantic salmon (Salmo salar). Canadian Journal of Fisheries and A quatic Sciences 47, 1672-1677.
J ordan, W. C., Y oungson, A. F., H ay, D. W. \& F erguson, A. (1992). Genetic protein variation in natural populations of Atlantic salmon (Salmo salar) in Scotland: temporal and spatial variation. C anadian J ournal of Fisheries and A quatic Sciences 49, 1863-1872.
M ork, J., Giskeodegard, R . \& Sundes, G. (1984). Population genetic studies in cod (Gadus morhua L.) By means of the haemoglobin polymorphism; observations in a N orwegian coastal population. Fiskeridirektoratets surifter-Serie H avundersokelser 17, 449-471.
Sokal, R. R. \& R ohlf, F. J. (1981). Biometry, 2nd edn. San F rancisco: W. H. Freeman.
Verspoor, E. (1988). R educed genetic variability in first-generation hatchery populations of resident and anadromous A tlantic salmon. C anadian Journal of Fisheries and Aquatic Sciences 45, 1686-1690.
Verspoor, E. (1989). Genetics and Stocking. In Tweed Towards 2000 (M ills, D. H., ed.), pp. 118-124. Berwick on Tweed, U.K .: Tweed Foundation.
Verspoor, E. \& Jordan, W. C. (1989). Genetic variation at the M e-2 locus in the A tlantic salmon within and between rivers: evidence for its selective maintenance. Journal of Fish Biology 35 (Suppl. A), 205-213.

[^0]: \ddagger A uthor to whom correspondence should be addressed. Tel.: +44(0) 1224 295465; fax: +44 (0) 1224 29551; email: verspoor@marlab.ac.uk

